Deletion of the N-terminus of SF2/ASF Permits RS-Domain-Independent Pre-mRNA Splicing

نویسندگان

  • Stephanie D. Shaw
  • Sutapa Chakrabarti
  • Gourisankar Ghosh
  • Adrian R. Krainer
چکیده

Serine/arginine-rich (SR) proteins are essential splicing factors with one or two RNA-recognition motifs (RRMs) and a C-terminal arginine- and serine-rich (RS) domain. SR proteins bind to exonic splicing enhancers via their RRM(s), and from this position are thought to promote splicing by antagonizing splicing silencers, recruiting other components of the splicing machinery through RS-RS domain interactions, and/or promoting RNA base-pairing through their RS domains. An RS domain tethered at an exonic splicing enhancer can function as a splicing activator, and RS domains play prominent roles in current models of SR protein functions. However, we previously reported that the RS domain of the SR protein SF2/ASF is dispensable for in vitro splicing of some pre-mRNAs. We have now extended these findings via the identification of a short inhibitory domain at the SF2/ASF N-terminus; deletion of this segment permits splicing in the absence of this SR protein's RS domain of an IgM pre-mRNA substrate previously classified as RS-domain-dependent. Deletion of the N-terminal inhibitory domain increases the splicing activity of SF2/ASF lacking its RS domain, and enhances its ability to bind pre-mRNA. Splicing of the IgM pre-mRNA in S100 complementation with SF2/ASF lacking its RS domain still requires an exonic splicing enhancer, suggesting that an SR protein RS domain is not always required for ESE-dependent splicing activation. Our data provide additional evidence that the SF2/ASF RS domain is not strictly required for constitutive splicing in vitro, contrary to prevailing models for how the domains of SR proteins function to promote splicing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The evolution of science at the National Institutes of Health and the National Institute of Environmental Health Sciences.

Serine/arginine-rich (SR) proteins are essential splicing factors with one or two RNA-recognition motifs (RRMs) and a C-terminal arginineand serine-rich (RS) domain. SR proteins bind to exonic splicing enhancers via their RRM(s), and from this position are thought to promote splicing by antagonizing splicing silencers, recruiting other components of the splicing machinery through RS-RS domain i...

متن کامل

The C-terminal domain of RNA polymerase II functions as a phosphorylation-dependent splicing activator in a heterologous protein.

RNA polymerase II, and specifically the C-terminal domain (CTD) of its largest subunit, has been demonstrated to play important roles in capping, splicing, and 3' processing of mRNA precursors. But how the CTD functions in these reactions, especially splicing, is not well understood. To address some of the basic questions concerning CTD function in splicing, we constructed and purified two fusi...

متن کامل

Genetic analysis of the SR protein ASF/SF2: interchangeability of RS domains and negative control of splicing.

The SR proteins constitute a family of splicing factors, highly conserved in metazoans, that contain one or two amino-terminal RNA-binding domains (RBDs) and a region enriched in arginine/serine repeats (RS domain) at the carboxyl terminus. Previous studies have shown that SR proteins possess distinct RNA-binding specificities that likely contribute to their unique functions, but it is unclear ...

متن کامل

Pre-mRNA splicing in the absence of an SR protein RS domain.

SR proteins are essential pre-mRNA splicing factors that act at the earliest stages of splice-site recognition and spliceosome assembly, as well as later in the splicing pathway. SR proteins consist of one or two RNA-recognition motifs and a characteristic arginine/serine-rich C-terminal RS domain. The RS domain, which is extensively phosphorylated, mediates the subcellular localization of indi...

متن کامل

Interaction between the N-terminal domain of human DNA topoisomerase I and the arginine-serine domain of its substrate determines phosphorylation of SF2/ASF splicing factor.

Human DNA topoisomerase I, known for its DNA-relaxing activity, is possibly one of the kinases phosphorylating members of the SR protein family of splicing factors, in vivo. Little is known about the mechanism of action of this novel kinase. Using the prototypical SR protein SF2/ASF (SRp30a) as model substrate, we demonstrate that serine residues phosphorylated by topo I/kinase exclusively loca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PLoS ONE

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2007